A medium-chain triglyceride containing ketogenic diet exacerbates cardiomyopathy in a CRISPR/Cas9 gene-edited rat model with Duchenne muscular dystrophy

  • Lapidos, KA, Kakkar, R. & Mcnally, EM The dystrophin glycoprotein complex. circle Beef. 941023–1031 (2004).

    CAS Article Google Scholar

  • Verhaart, IEC & Aartsma-Rus, A. Therapeutic developments for Duchenne muscular dystrophy. Nat. Rev. Neurol. fifteen373–386 (2019).

    ArticleGoogle Scholar

  • Matthews, E., Brassington, R., Kuntzer, T., Jichi, F. & Manzur, AY Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database System Rev. 5CD003725 (2016).

  • Yusuf, S. et al. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N. Engl. J. Med. 325293–302 (1991).

    ArticleGoogle Scholar

  • Bourke, J.P. et al. Randomized placebo-controlled trial of combination ACE inhibitor and beta-blocker therapy to prevent cardiomyopathy in children with Duchenne muscular dystrophy? (DMD Heart Protection Study): A protocol study. BMJOpen 8e022572 (2018).

  • CIBIS-II Investigators and Committees. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): A randomized trial. Lancet 3539–13 (1999).

    ArticleGoogle Scholar

  • MacMahon, S. et al. Randomized, placebo-controlled trial of carvedilol in patients with congestive heart failure due to ischaemic heart disease. Lancet 349375–380 (1997).

    CAS Article Google Scholar

  • Kieny, P. et al. Evolution of life expectancy of patients with Duchenne muscular dystrophy at AFM Yolaine de Kepper center between 1981 and 2011. Ann. Phys. Rehabil. Med. 56443–454 (2013).

    CAS Article Google Scholar

  • Seguchi, O. et al. Heart transplantation ameliorates ambulation capacity in patients with muscular dystrophy—an analysis of 9 cases. circle J. 83684–686 (2019).

    ArticleGoogle Scholar

  • Grady, R.M. et al. Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: A model for Duchenne muscular dystrophy. Cell 90729–738 (1997).

    CAS Article Google Scholar

  • Nakamura, K. et al. Generation of muscular dystrophy model rats with a CRISPR/Cas system. Sci.Rep. 45635 (2014).

  • Sugihara, H. et al. Cellular senescence-mediated exacerbation of Duchenne muscular dystrophy. Sci.Rep. 416385 (2014).

  • Sugihara, H. et al. Age-dependent echocardiographic and pathologic findings in a rat model with Duchenne muscular dystrophy generated by CRISPR/Cas9 genome editing. Int. Heart J. 611279–1284 (2020).

    CAS Article Google Scholar

  • Miyamoto, M. et al. Cardiac lesions in Duchenne muscular dystrophy model rats with out-of-frame Dmd gene mutation mediated by CRISPR/Cas9 system. J. Toxicol. Pathol. 33227–236 (2020).

    CAS Article Google Scholar

  • Harvey, DC, Schofield, CJ, Williden, GM & McQuillan, JA The effect of medium chain triglycerides on time to nutritional ketosis and symptoms of keto-induction in healthy adults: A randomized controlled clinical trial. J. Nutr. Metab. 20182630565 (2018).

    ArticleGoogle Scholar

  • Neal, E.G. et al. The ketogenic diet for the treatment of childhood epilepsy: A randomized controlled trial. Lancet Neurol. 7500–506 (2008).

    ArticleGoogle Scholar

  • Augustine, K. et al. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol. 1784–93 (2018).

    CAS Article Google Scholar

  • Stafstrom, CE & Rho, JM The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front. Pharmacol. 359 (2012).

    ArticleGoogle Scholar

  • Nakao, R., Abe, T., Yamamoto, S. & Oishi, K. Ketogenic diet induces skeletal muscle atrophy via reducing muscle protein synthesis and possibly activating proteolysis in mice. Sci.Rep. 919652 (2019).

  • Tinsley, GM & Willoughby, DS Fat-Free mass changes during ketogenic diets and the potential role of resistance training. Int. J. Sport Nutr. exercise Metab. 2678–92 (2016).

    CAS Article Google Scholar

  • Huttenlocher, PR, Wilbourn, AJ & Signore, JM Medium-chain triglycerides as a therapy for intractable childhood epilepsy. neurology twenty-one1097–1103 (1971).

    CAS Article Google Scholar

  • Fujikura, Y., Sugihara, H., Hatakeyama, M., Oishi, K. & Yamanouchi, K. Ketogenic diet with medium-chain triglycerides restores skeletal muscle function and pathology in a rat model of Duchenne muscular dystrophy. Phaseb J. 35e21861 (2021).

  • Nakamura, M. et al. Dietary carbohydrates restriction inhibits the development of cardiac hypertrophy and heart failure. Cardiovasc. Beef. 1172365–2376 (2020).

    ArticleGoogle Scholar

  • Yu, Y., Wang, F., Wang, J., Zhang, D. & Zhao, X. Ketogenic diet attenuates aging-associated myocardial remodeling and dysfunction in mice. Exp. Gerontol. 140111058 (2020).

    CAS Article Google Scholar

  • Okere, IC et al. Low carbohydrate/high-fat diet attenuates cardiac hypertrophy, remodeling, and altered gene expression in hypertension. high blood pressure 481116–1123 (2006).

    CAS Article Google Scholar

  • Sharma, N. et al. High-sugar diets increase cardiac dysfunction and mortality in hypertension compared to low-carbohydrate or high-starch diets. J.Hypertens. 261402–1410 (2008).

    CAS Article Google Scholar

  • Doubt, M.K. et al. Low-carbohydrate/high-fat diet attenuates pressure overload-induced ventricular remodeling and dysfunction. J.Card. Fail. 14327–335 (2008).

    CAS Article Google Scholar

  • Nielsen, R. et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation 1392129–2141 (2019).

    CAS Article Google Scholar

  • Heydemann, A. Skeletal muscle metabolism in duchenne and becker muscular dystrophy-implications for therapies. Nutrients 10796 (2018).

  • Burelle, Y. et al. Alterations in mitochondrial function as a harbinger of cardiomyopathy: Lessons from the dystrophic heart. J. Mol. Cell. Cardiol. 48310–321 (2010).

    CAS Article Google Scholar

  • Montaigne, D., Butruille, L. & Staels, B. PPAR control of metabolism and cardiovascular functions. Nat. Rev. Cardiol. 12809–823 (2021).

    ArticleGoogle Scholar

  • Morroni, J. et al. Accelerating the Mdx heart histopathology through physical exercise. Life Basel eleven706 (2021).

    ArticleGoogle Scholar

  • Hourde, C. et al. Voluntary physical activity protects from susceptibility to skeletal muscle contraction-induced injury but worsens heart function in mdx mice. Am. J. Pathol. 1821509–1518 (2013).

    CAS Article Google Scholar

  • Diegoli, M. et al. Diagnostic work-up and risk stratification in X-linked dilated cardiomyopathies caused by dystrophin defects. J. Am. Coll. Cardiol. 58925–934 (2011).

    ArticleGoogle Scholar

  • Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 1611566–1575 (2015).

    CAS Article Google Scholar

  • Toco, H. et al. Omega-3 fatty acid prevents the development of heart failure by changing fatty acid composition in the heart. Sci.Rep. 1015553 (2020).

    ADS CAS Article Google Scholar

  • Nelson, JR & Raskin, S. The eicosapentaenoic acid:arachidonic acid ratio and its clinical utility in cardiovascular disease. Postgrad. Med. 131268–277 (2019).

    CAS Article Google Scholar

  • Simopoulos, AP The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56365–379 (2002).

    CAS Article Google Scholar

  • Mauricio, AF, Pereira, JA, Santo Neto, H. & Marques, MJ Effects of fish oil containing eicosapentaenoic acid and docosahexaenoic acid on dystrophic mdx mice hearts at later stages of dystrophy. Nutrition 32855–862 (2016).

    ArticleGoogle Scholar

  • C. de Lucia, et al. Echocardiographic strain analysis for the early detection of left ventricular systolic/diastolic dysfunction and dyssynchrony in a mouse model of physiological aging. J. Gerontol. A Biol. Sci. Med. Sci. 74455–461 (2019).

    ArticleGoogle Scholar

  • Bauer, M. et al. Echocardiographic speckle-tracking based strain imaging for rapid cardiovascular phenotyping in mice. circle Beef. 108908–916 (2011).

    CAS Article Google Scholar

  • Du Sert, NP et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18e3000410 (2020).

  • American Veterinary Medical Association. AVMA guidelines on euthanasia, 2020 Edition, https://www.avma.org/sites/default/files/2020-02/Guidelines-on-Euthanasia-2020.pdf (2020).

  • Leave a Comment